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Abstract—In the modern smart home, 

smart meters and Internet of Things (IoT) 
have been massively deployed to replace 
traditional analogue meters. It digitalises the 
data collection and the meter readings. The 
data can be wirelessly transmitted that 
significantly reduces  manual works.  
However,  the  community of smart home 
network is vulnerable to energy theft. Such 
attackscannotbeeffectivelydetectedsincetheex
istingtechniques require certain devices to be 
installed to work. This imposes a challenge 
for energy theft detection systems to be 
implemented despite the lack of 
energymonitoring devices.Thispaperdevelops 
an energy detection system called Smart 
Energy Theft System (SETS) based on 
machine learning and statistical models. 
There are 3 stages of decision-making 
modules, the first stage is the prediction 
model which uses multi-model forecasting 
System. This system  integrates  various  
machine  learning  models  into  a single 
forecast system for predicting the power 
consumption. The second stage is the primary 
decision making  model  that  uses Simple 
Moving Average (SMA) for filtering 
abnormally. The third stage is the secondary 
decision making model that makes the final 
stage of the decision on energy theft. The 
simulation results demonstrate that the 
proposed system can successfully detect 
99.96% accuracy that enhances the security 
of the IoT basedsmarthome. 

Index Terms—Smart homes, Smart grid, 
Internet of things, Energy theft, Machine 

learningtechniques 
I. INTRODUCTION 

In the modern smart grid, massive deployment 
of advanced metering infrastructures (AMI) 
facilitate the efficient and reliable information 
exchange. The AMI can be divided into different 
sectors depending on the location  which is 
crucial  to end consumer. AMI includes smart 
meters and Internet of Things (IoT) monitoring 
devices that were able to collect data 
inlargevolumesandfastspeed. 

Smart home innovators today focus on system 
development, system architecture, 
communication protocols, and forecasting tools 
[1], [2]. These innovations provide home 
consumers with a better technology in terms of 
energy monitoring, control, and reliability. For 
example, Demand Side Management System 
(DSMS) was introduced to better manage and 
control power consumption for the smart homes 
[3]. This power conservation concept increased 
the research on improving DSMS methods like 
load-shifting, dynamic price management, 
forecasting demand, and demand response 
systems [4]–[6]. 

These advancements improved through the use 
of machine learning and statistical modelling. 
Algorithms such as Simple 
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Moving Average (SMA), Multi-Layer 
Perceptron (MLP), Recurrent Neural Network 
(RNN), Long Short Term Memory (LSTM), and 
Gated  Recurrent Unit (GRU)  have been  used  
in the energy efficiency sector [7]–[10]. 
However, it is still 
vulnerabletomaliciousbehavioursuchasenergyth
eft. 

Energy theft has been a rising issue for various 
countries around the world. Despite this, only a 
few preventive energy theft methods were 
created to combat the issue. Zhou, Y.  et  al. 
proposed a dynamic programming algorithm for 
leveraging probabilistic detection of energy theft 
in the smart home [11]. This proposed method 
requires the deployment of Feeder Remote 
Terminal Unit (FRTU) on top of a smart meter 
which incurs high costs for consumers. 
Additionally, it works only 
undertheassumptionthatasmartmeterisavailable. 

Liu,Y. and Hu, S. proposed  a 
detectiontechniquethathasa detection accuracy 
of 
92.55%onaverage[12].Thisproposeddetectiontec
hniqueintegratedBollinger-bands-baseddetectio
nwiththepartiallyobservableMarkov- 
decisionprocess(POMDP). However, it does 
notreflectonall conditionsof a house 
environment. 
Firstlythehousedemanddatahasconsistent energy 
consumptionthroughouttheentire24hours.Itdoes
notincludeanyzeroenergyconsumptionfora 
particularhour.AnotherconditionontheBollinger
Bandmethod,th 
edeviationcanonlybedoneinaconsistentrangeofe
nergyusage. 

However, if the range 
ofenergyusagebecamelarge,theBollingerBandm
ethodcouldnotbeusedduetoits 
deviation.ThispaperproposesanovelideaofSmart
EnergyTheftSy 
stem(SETS)forthesmarthome.Thisenergytheftde
tectionalgorith 
mismoreefficientandreliablecomparedtopreviou
smethods.Asar 
esultofanon-intrusivemethodofdatacollection,th
eenergymonitoring systemwasimplementedin a 
realhouseinSingapore. The collected 

dataincludesTimeseriesdatapowerconsumption 
from anon-controlledreal-life 

house environment. 
The remaining paper is organised as follows: 

Section II presents background information 
about the foundation of the Smart Energy Theft 
System (SETS). Section III shows the proposed 
methodology for Smart Energy Theft 
System(SETS). Section IV provides the 
simulation results of the proposed 
system.Finally,thepaperisconcludedinsectionV. 

 
II. BACKGROUND INFORMATION 
A. SmartHomes 
SmartHomesarecreatedthroughimplementatio

nofInternet of Things (IoT) and smart meters 
[13]–[16]. In order to monitor and control the 
Advanced MeteringInfrastructure 

(AMI), Energy Management System (EMS) 
was an essential integration of the system 
infrastructure [17]–[20]. 

Demand  Side  Management System (DSMS)  
is  included as a function of EMS [21]. Its 
functionality focuses  mainly  on managing the 
demand response and loads. It collects the 
demand information to dictate the optimal power 
usage such as implementing load-shifting to 
enable the use of electricity 
marketsduringpeakandoff-peakhours. 

It allows users to conveniently dictate their 
smart appliances within the home area by using 
mobile devices. More advanced and developed 
systems could further analyse the data collected 
and make its own decision for the  smart  homes 
to operate  in a cost-effective and 
energy-efficient method based on users’ 
consumptionpatterns. 

 
B. EnergyTheft 
Energy theft has become a  serious  issue  in  

the  smart  grid community [22]. It has caused 
massive losses for many countries that exceed 
billions of dollar. Nowadays, a smart meter will 
be placed at the end of every distribution 
network to record power consumption and 
generates the energy reports remotely. An 
example of the home distribution network is 
shown inFig.1. 
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Fig. 1: Home distribution network 
 
Energy theft methods involve hacking smart 

homeappliance and most commonly direct 
hooking on other households electricity supplies. 
Other methods involved are tampering with the 
smart meter’s software, mechanism, 
andmanipulating data through cloud storage 
[23]. Thus, attackers can reduce their own 
electricity usage by manipulating other 
households through tampering and hacking to 
increase their electricity usage as the aggregate 
bill for all customers in the community remains 
the same [24]. Fig.2 shows an example of energy 
theft situation. 

 
The example shows that through energy theft, 

the higher consumption household can reduce 
their own power consump- tion through tapping 
on another household. It increases the electricity 
bills for the other household victim while 
reducing the energy theft culpritbills. 
III. PROPOSED SMART ENERGY THEFT 
SYSTEM(SETS) 
Fig.3showstheoveralldesignoftheproposedSmart
Energy 

Theft System (SETS) for the smart homes. 
SETS is designed 
fordetectingenergytheftandalertingtheconsumer
s.Itcollects information from monitoring devices 
and analyses the data to detect energytheft. 

 

 

 
Fig. 3: Overall SETS architecture 
 
The overall architecture comprises the 

following modules: 
• DataCollectionModule 
• PredictionModel 
• Primary DecisionMakingModel 
– ContinuousHourModel 
– Same Day andHourModel 
• Secondary DecisionMakingModel 
– Power ConsumptionModel 
The data collection module collects the data 

for SETS. The first stage of SETS is the 
prediction model. The prediction model uses 
Multi-Model Forecasting System that comprises 
different machine learning methods: 
Multi-Layer Perceptron (MLP), Recurrent 
Neural Network (RNN), Long Short Term 
Memory(LSTM),andGatedRecurrentUnit(GRU)
.Itpredicts and compares the actual data to detect 
abnormally. Second stage  of SETS is the 
primary decision making model. This stage uses 
a statistical model called Simple Moving 
Average 
(SMA)tofiltertheabnormallyfromthefirststage. 

Third stage of SETS is the secondary decision 
making model. This stage further filter from the 
second stage and decides whether energy theft 
had occurred. After taking the final decision, the 
whole process will be repeated for the next 
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incoming data. SETS is best implemented with 
an independent 
hardwaresystemdirectlyatthesmartmeters,thisisb
ecauseany 
interferencesforenergytheftregardlessoftamperin
ghardware or manipulation of data can be 
detected. It is more accurate compared to just 
monitoring the data from cloud or operator’s 
databaseasmanyotherfactorsmayaffecttheanalysi
s. 

 
A. Data CollectionModule 
Demand Side Management System (DSMS) 

collates the information from various real-time 
monitoring smart devices in the house. The data 
collection module for setting up Smart Energy 
Theft System (SETS) is to get the real-time 
monitoring ready. Data collection module used a 
set of smart plugs called Aeon Labs Z-Wave UK 
Plug-in Switch plus  Power  Meter  and the main 
controller was a VeraEdge Home Controller. 
ConnectivityfordatacollectionisshowninFig.4. 

Fig. 4: Data collection system architecture 
 
This system was placed on a Singapore smart 

home for collecting data through a non-invasive 
method of energy monitoring. 

 
B. SETS 
SETS detects unexpected energy theft from 

any form of malicious attack. This proposed 
system is designed with the following stages: 

1) Stage 1: Prediction model: Multi-Model 
Forecasting System: The Prediction Model 
forecast  the  next  24  hours  by using 
Multi-Model Forecasting System. Measured 
data is used for predictions and comparison to 
determine the energy theftsituation. 

a) Stage 1: Multi-Model Forecasting Systems 
and Algo- rithms: The Multi-Model Forecasting 
System uses different machine learning methods 
and utilises the most accuratemodel 
throughthestateofpredictionmodeldecisionmakin
gconditionsp(n). The forecasting systems 
Multi-Layer Perceptron (MLP), Recurrent 
Neural Network (RNN), Long Short Term 
Memory (LSTM), and Gated Recurrent Unit 
(GRU) are used at this 
stageandabriefdescriptionisasfollows: 

• Multi-layer perceptron(MLP) 

Artificial neural networks (ANN) are often 
called neural 
networksormulti-layerperceptron(MLP)torepres
entthe most useful type of neural network. It is 
inspired by the biological architecture of the 
brain which can be used to 
solvedifficultcomputationaltasks.Thegoalisdeve
loping robust algorithms and data structures that 
can be used to solve difficult problems [25]. 

 
 

:Hiddenlayeroutput,Wnk:Input-to-hiddenlayerw
eights, βnk: Hidden-to-output layer weights, and 
σ : Activation function. 

By using the hidden layer function, the best set 
of results 
canbefoundinthenetwork.ThepowerofMLPpredi
ction capability comes from the ability to learn 
from training data and relating the best testing 
data to the given output data in a hierarchical or 
multi-layered structure of the network. It uses 
supervised learning technique called 
backpropagation for training the network. Due to 
its popular ability to solve difficult problems, a 
variety of MLP was created to optimise the result 
for different types ofissue. 

• Recurrent NeuralNetwork(RNN) 
RNNs are a type of artificial neural network 

that was designed to learn patterns in data 
sequences such as numerical time series data, 
images, and text. It is a powerful type of  neural  
network  that  has  been  used  in industries such 
as sensors, the stock market, and 
governmentagencies. 

Fig.6showstheRNNfullnetwork(unfolded)whi
chisthe 
completesequenceofthenetwork.Forexample,ifth
ereis a sequence of three numerical values, the 
network would unfold into a three-layer neural 
network that supports a layer for 
eachnumericalvalue. 

  
 
  
 
 
 
 
 
Fig. 6: Recurrent neural network and 
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unfolding sequence diagram 
 
The computational formulas [27] in an RNN 

happens as follows: 
 
st= σ(st−1.W+xt.U+b) (3) 
 
ot=st.V (4) 
Where,t:Timestep,xt:Inputdata,ot:Predictedou

tput, 
st: Hidden state, U : Input-to-hidden 

weights,W 
:Hidden-to-hiddenweights,V:Hidden-to-outpu

tweights, 
b : Bias value, and σ : Activation function. 
Hidden state stis considered the memory of the 

network; it captures information about the 
situation in all previous time steps which was the 
main feature of an RNN. otis the output 
predicted solely based on the current memory at 
time step t. RNN weights U , V , W are constant 
throughout the process, unlike traditional neural 
network 
whereitisdifferentateachlayer.Thisreducesthenu
mber 
ofparametersrequiredtobelearntbyperformingthe
same taskateachtimestepbutwithdifferentinputs. 

• Long Short TermMemory(LSTM) 
One of the appeals of RNNs is the idea that 

they might be able to connect previous 
information to the present task. In cases where 
the gap between the relevant information and the 
place which is required was small, RNNs is able 
to learn and utilise the past information [28]. 
However, if the gap is huge, RNN is unable to 
link the information 
forthelearningprocesstokickin. 

In order to solve long-term dependency issues, 
a special kind of RNN called Long Short Term 
Memory (LSTM) networks were created. It was 
introduced by Hochreiter& 
Schmidhuber[29]whichwasthenpopularisedandr
efined 
bymanypeopleinvariousindustriesasitworksextre
mely well on a variety of problems. Fig. 7 shows 
how each 
blockofLSTMnetworkinteractswitheachother. 

 
Fig. 7: LSTM network diagram 
  

Fig.8 shows the details of the LSTM block 
[28]. In Fig.  8, each line carries an entire vector, 
from the output of one node to the inputs of the 
others. The grey circles represent pointwise 
operations, similar to vector addition, while the 
orange boxes are learned neural network layers. 
Lines (vector transfer) denote content going to 
different locations. 

 
 
 
 
 
 
 
Fig. 8: LSTM block diagram 
 
The computational formulas [30], [31] in an 

LSTM block are defined as follows: 
ft=σ(Wf.[ht−1,xt]+bf) (5) 
 
it=σ(Wi.[ht−1,xt]+bi) (6) 
 
C¸´t=tanh(Wc.[ht−1,xt]+bc) (7) 
 
Ct=ft.Ct−1+it.C´¸t 
 
(8) ot=σ( 
 
Wo.[ht−1,xt]+bo) 
 
(9) ht=ot 
 
.tanh(Ct) (10) 
Where, t : Time step, xt: Input value, ht: 

Output value, ot: Output gate, ft: Forget gate, it: 
Input gate, Ct: Cell 
state,C´¸t:Candidatevalue,Wo:Outputgateweight
s, 
Wi:Inputgateweights,Wf:Forgetgateweights,Wc
: 

Cell state weights, bo: Output gate bias value, 
bi: Input 
gatebiasvalue,bf:Forgetgatebiasvalue,bc:Cellsta
te bias value, and σ : Gate state. 

There are three gates in the block that manage 
the block state and output: 

– Forget Gate ft: decides the information to 
throwin theblock. 

– Input Gate it: decides which input values to 
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update thememorystate. 
– Output Gate ot: decides the output 

dependingonthe 238 
  
[32].ThisallowsthecreationoflargeLSTMtoadd

ress –Thenumberofhiddenlayer[33]: 
  
complex sequence problems and achieve 

optimal results. 
• Gated RecurrentUnit(GRU) 
  
nh=(ni+no)+ 
  
√nt (15) 
  
A variation of the LSTM is the Gated 

Recurrent Unit (GRU) which was introduced by 
Cho, et al. [30]. This system has a single update 
gate which combines the input and output gate. It 
also merges the hidden and cell state which 
makes a simplified model than a standard LSTM 

  
Where,nh:Numberofthehiddenlayer,ni:Numbe

r of the input layer, n0: Number of the output 
layer, andnt:Numberofthetrainingsets. 

– The Mean Absolute Percentage Error 
(MAPE): 

  
model. Fig. 9 shows the details of the GRU 

model [28]. 
  
MAPE = 
  
100ΣnA|−iF 
  
i|,whereA 0 
  
n n i=1 Ai 
  
i 
(16) 
  
Where, n : Number of data, Ai: Actual output 

data, and Fi: Forecast output data. 
– The Absolute Percentage Error (APE): 
  
 
APE 
  
= 100( An − Fn),where A 

  
0 (17) 
  
n | n 
n 
where APEn= Absolute Percentage Error for 

n. 
– The state of prediction: 
. 
  
sp(n) 
  
= 0, ifAPEn≤MAPEn 
1, otherwise 
  
(18) 
  
 
 
Fig. 9: GRU block diagram 
 
The GRU layer is derived from the LSTM 

layer which results in similar equations: 
  
Where, sp(n): State of prediction model 

decision making condition. 
b) Stage 1: Procedures: The following steps 

aretaken forthisstage: 
•

 Step1:Pre-processthedatatoaccumulativedata. 
•

 Step2:Usingpredictionmodeltopredictthedata. 
  
z =σ(W.[h ,x]) (11)

 •Step3:UsingMeanAbsolutePercentageError(
MAPE) 

t z t−1   t to dictate the best predictionmodel. 
• Step 4: Use the updated MAPE to 

comparewithAbsolute 
  
rt=σ(Wr.[ht−1,xt]) (12) 
 
ht=tanh(W.[rt.ht−1,xt]) (13) 
  
Percentage Error (APE) for every hour. 
• Step 5: If sp(n)= 1 then go to the next stage, 

otherwise go to thenextiteration. 
 
2)

 Stage2:PrimaryDecisionMakingModel:Thisst
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age 
  
ht=(1−zt).ht−1+zt.ht˘ 
  
(14) 
  
uses Simple Moving Average (SMA) to 

determine the energy theftpredictions. 
  
Where,t:Timestep,xt:Inputvalue,ht:Outputval

ue, rt: Reset gate, zt: Update gate, ht:  
Candidatevalue, Wr: Reset gate weights, Wz: 
Upd˘ate gate weights, W: 

  
a) Stage 2: Algorithms: The following 

formulas are used forthisstage: 
• The Simple MovingAverage(SMA): 
  
Candidate gate weights, and σ : Gate state. 
The reset gate determines the new input and 

previous memory combination and the update 
gate determines the 

  
1 
SMA(n) = n 
  
Σn 
xi 
i=1 
  
 
(19) 
  
amount of previous memory to be kept. The 

idea of using a gating mechanism is similar to 
LSTM with an objective to learn long-term 
dependencies. The key differencesare: 

– GRU has two gates while LSTMhasthree. 
– GRU does not have output gate 

andinternalmemory. 
– GRU trains faster due to lesser parameters. 
GRU and LSTM models had solved the long 

term dependencies issues but the trade-off of 
both system are not fully explored [32]. 

  
Where, n: The number of hours for SMA and 

x: The variable for the hour in the list. 
• The Maximum SMAdifferencealgorithm: 
SMA(md)= max f(|SMA(i)−SMA(i−1)|), 
i∈n 

wheren 0 
Where, SMA(md): Maximum of the SMA 

difference between before andafter. 
• Thestate.ofhours: 
  
 
 
 
 
(20) 
  
• State of Prediction Model(sp(n) ) The State 

ofPrediction 
  
0,if(SMA −SMA )≤3SMA , 
  
Model (sp(n)) determines the abnormally for 

energy theft in stage 1. The following formulas 
were used for this stage: 

  
sh(n)= n 
1, otherwise 
  
n−1 4 (md) 
 
(21) 
  
Where, sh(n): State of hours algorithm 

decision making condition. 
b) Stage 2: Procedures: The following steps 

are taken forthisstage: 
• Stage 2.1: ContinuousHourModel: 
– Step 1: Calculate Simple Moving Average 

(SMA) using 24hoursperiod. 
– Step 2: Find the difference between the 

SMA calcu- lation for the last hour and the 
current hour after 25 hours ofmeasureddata. 

– Step 3: Use the Maximum SMA 
differencealgorithm 
andproceedtothestateofhoursalgorithm. 

– Step4:Ifsh(n)=1thenstarttheSameDayand 
Hour Model, otherwise go to the next iteration. 
• Stage2.2:SameDayandHourModel: 
– Step 1: Rearrange the data according to the 

day and hour. 
– Step 2: Calculate SMA using 4 hours of data 

from thesamedayandhourfromdifferentdates. 
– Step 3: Find the difference between the 

SMA calcu- lation for the last point and the 
current point after 5 points ofmeasureddata. 
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– Step 4: Use the Maximum SMA 
differencealgorithm 
andproceedtothestateofhoursalgorithm. 

– Step 5: If sh(n)= 1 then go to the nextstage, 
otherwise go to the next iteration. 

 
3) Stage 3: Secondary Decision Making 

model: This stage uses the user’s history to find 
the occasional maximum power usages. 

a) Stage 3: Algorithms: The following 
formulasareused for this stage: 

• TheMaximumwattage: 
  
IV. SIMULATION STUDIESAND 

RESULTS 
A. Experiment Setup and DataCollection 
TheAeonLabsZ-WaveUKPlug-inSwitchplusP

owerMeter were installed on every available 
energy consumption devices 
intheexperimentalhouse.Then,thedatawascollect
edthrough a centralised smart device called 
VeraEdge Home Controller. 
Fig.10showsthedemanddatacollectedfromtheexp
erimental house. The data collected from 
04/12/2016 – 02/04/2017 were 
inkilowatt(kW)andtimestamp(DD/MM/YYYY
HH:MM). 

 
Fig. 10: Plot of experimental house demand 

data 
 
B. SmartEnergyTheftSystem(SETS)Results 
The SETS was tested using simulated energy 

theftscenarios. The scenario was created by 
randomly stealing energy on 50 different 
periods. Fig.11, 12, 13, and 14 show the 
respective 
predictionresultsforMLP,RNN,LSTM,andGRU. 

  
P(md)=maxf(P(|i)) | 
i∈n 
  
(22) 
  
Where, P(md): The maximum power from the 

list of measurement. 
• The state ofenergytheft: 
. 
  

sets(n)= 
  
0,if3P(m4d)≤Pn≤P(md) 
1, otherwise 
  
(23) 
  
Where, sets(n): State of energy theft algorithm 

decision making condition. 
b) Stage 3: Procedures: The following steps 

aretaken forthisstage: 
• Step 1: Find the Maximum watt and proceed 

to thestate of energytheftalgorithm. 
•

 Step2:Ifsets(n)=1thenpossibleenergytheft,othe
rwise 
unexpectedhighconsumptionusagefromconsume
rs. 

• Step3:Proceedtonextiteration. 
After all the stages are completed, it will move 

to the next period and repeat the process from 
stage 1. However, SETS requires at least 5 
weeks of non-malicious data collection at every 
hour in order for the system to learn from the 
historical data. This learning will be constantly 
updated for real-time monitoring and it can 
increase its accuracy with more data coming in. 

  
 
Fig. 11: MLP predictionresult 
 
 
 
Fig. 12: RNN predictionresult 
  
  
 
  
 
 
 
 
 
 
Fig. 13: LSTM prediction result 
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Fig. 14: GRU prediction result 
 
Table I shows the MAPE results for different 

forecasting systems. The best MAPE result was 
0.18% which was 
consideredmostsuitablemethodascomparedtooth
ermethods tested. 

 
TABLE I: SETS: Prediction model MAPE 

results 
 
Prediction model MLP RNN LSTM GRU 
MAPE(%)-Train 33.99 2353.23 5.48 11.20 
MAPE(%)-Test 0.18 68.83 0.81 1.32 
 
Fig.15 shows the stage 2 alert system for 

Smart Energy Theft System (SETS). These 
results were obtained after the 
dataprocessedthroughstage2inSETS. 

 
 
  
Fig. 15: SETS: Stage 2 alert notifications 

Prediction model MLP RNN LSTM GRU 
MAPE(%)-Train 33.99 2353.23 5.48 11.20 
MAPE(%)-Test 0.18 68.83 0.81 1.32 

 
In Fig.15, the alert notifications were made 

after processing through stage 2. It filters the 
abnormally from stage 1 and proceeded to stage 
3 if it is not able to make a decision. 

Fig.16 shows the stage 3 final stage alert 
system for Smart 
EnergyTheftSystem(SETS).Theseresultswereob
tainedafter 
thedataprocessedthroughstage2and3inSETS. 

 

 
Fig. 16: SETS: Stage 3 alert notifications 
In Fig.16, the final stage alert notifications 

were made from filtering stage 2 and using stage 
3 algorithms. This results in 99.96% accuracy of 
classifications using SETS with all stages 
implemented. 

 
C. Discussion 
Table II shows classification results for 

different cases with 

thesameenergytheftscenario.Thecasesin 
TableIIweredone by randomly stealing the 
energy of 50 different periods. These conditions 
were maintained to present a fair environment 
for the detection capability of Smart Energy 
Theft System(SETS). 

TABLEII:Summaryofclassificationresultsindi
fferentstages 

SETS Case Studies Classification 
Accuracy (%) 

Case 1: Stage 1 56.39 
Case 2: Stage 2 99.46 
Case 3: Stage 3 0.68 
Case 4: Stage 1 & 3 56.87 
Case 5: Stage 2 & 3 99.89 
Case 6: Stage 1 & 2 99.89 
Case 7: All Stages 99.96 

 
SETS Case Studies Classification Accuracy 

(%) 
Case 1: Stage 1 56.39 
Case 2: Stage 2 99.46 
Case 3: Stage 3 0.68 
Case 4: Stage 1 & 3 56.87 
Case 5: Stage 2 & 3 99.89 
Case 6: Stage 1 & 2 99.89 
Case 7: All Stages 99.96 
 
Table III shows classification results for 

different sub-cases with the same energy theft 
scenario. 

TABLE III: Summary of classification results 
for sub-cases 

 
SETS Sub-Case Studies Classification 

Accuracy (%) 
Sub-Case 1: Stage 2.1 2.04 
Sub-Case 2: Stage 2.2 19.39 

SETS Sub-Case Studies Classification Accuracy (%) 
Sub-Case 1: Stage 2.1 2.04 
Sub-Case 2: Stage 2.2 19.39 
Sub-Case 3: Stage 2.1 & 3 99.39 
Sub-Case 4: Stage 2.2 & 3 99.32 
Sub-Case 5: Stage 1 & 2.1 99.4 
Sub-Case 6: Stage 1 & 2.2 99.4 
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Sub-Case 3: Stage 2.1 & 3 99.39 
Sub-Case 4: Stage 2.2 & 3 99.32 
Sub-Case 5: Stage 1 & 2.1 99.4 
Sub-Case 6: Stage 1 & 2.2 99.4 
 
Case 1, 2, and 3 were a single stage detection 

system. Case 4, 5, and 6 were 2 stages detection 
systems. Case 7 represents the Smart Energy 
Theft System (SETS). 

Case1,2,and3achievedclassificationsaccuracy
of56.39%, 
99.46%,and0.68%.Amongthesinglestagedetecti
onsystems, case 3 had the worst accuracy result 
while case 2 had the best accuracy results. 
However for case 2, further findings were found 
by separating stage 2 into stage 2.1 (Continuous 
Model) and stage 2.2 (Same Day and Hour 
Model). Sub-cases 1 and   2 achieved just 2.04% 
and 19.39% respectively. Case 2 had further 
demonstrated that by integrating the 2 models, it 
shows tremendous improvements 
fordetectiontechniques. 

Case4,5,and6achievedclassificationsaccuracy
of56.87%, 99.89%, and 99.89%. Among the 2 
stages detection systems, case 4 had the worst 
accuracy result while case 5 and 6 had  the best 
accuracy results. 2 stages integration results 
show improvements compared to single stage 
detection systems. Case 5 was further analysed 
in sub-case 3 and 4. Sub-case 3 had a 99.39% 
accuracy and sub-case 4 achieved99.32%.Case 

  
6 was also further analysed in sub-case 5 and 

6. Sub-cases 5 and 6 had both achieved 99.4%. 
Case 7 was done using SETS to achieve a 
classification accuracy of 99.96%. 

After reviewing all the cases, it shows 
significant increment by integrating the different 
stages in SETS. By using a single detection 
system, detection accuracy results like  Case  1  
and 3 would not be efficient enough for  energy 
theft  situations.  By integrating 2 detection  
systems,  although  case  4  was still not efficient 
but case 5 and 6 had shown considerable 
improvements on its classification accuracy. 
Ultimately, this led to an integration of all 3 
detection techniques with the best classification 
accuracy amongallcases. 

V. CONCLUSIONS 
In this paper, an innovative Smart Energy 

Theft System (SETS) is proposed for energy 
theft detection. A Multi-Model Forecasting 
System based on the integration of machine 
learning models such as Multi-Layer Perceptron 
(MLP), Re- current Neural Network (RNN), 
Long Short Term Memory (LSTM), and Gated 
Recurrent Unit (GRU) was developed as part of 
SETS. Additionally, a statistical model called 
Simple Moving Average (SMA) was also further 
developed intoSETS. These algorithms enable 
SETS to efficiently detect energy theft activities. 
The evaluation  of  its  system  carried  out  in  a 
Singapore home environment. Stage 1 has an 
energy theft accuracy result of 56.39%, by 
adding stage  2  has  99.89%  and all 3 stages 
present the evidence of its energy detection 
algorithm accuracy of 99.96%. In conclusion, 
SETS enhances the security of the Internet of 
Things (IoT) based smart home systems from 
energy theft and can be further implemented in 
commercial and industrialsectors. 
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